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Multivariate Gaussianity is an assumption often utilized for multiple variables.  It is assumed that all 
variables comprise a Gaussian random function after normal score transformation.  Realistically, we are 
only know that the marginal distributions are Gaussian.  Higher order distributions between variables at 
the same location or between variables distributed in space may not be Gaussian.  The Gaussian model 
may be inadequate in some cases.  This paper discusses a non-parametric technique to model multivariate 
distributions after normal score transformation.  Marginal distributions are Gaussian.  The sequence of 
polynomials known as Bernstein polynomials are used to model the multivariate relationship between a set 
of variables.  The method is applied in an example involving full permeability tensors resulting in a nine-
variable distribution. 

Introduction 

The relationship between a set of variables is often assumed multi-Gaussian after a normal score 
transformation.  However, this is not always acceptable.  Scatter plots of the normal scores often show non-
linear features, constraint type features, or heteroscedasticity.  These cannot be reproduced under a multi-
Gaussian assumption.  Techniques have been developed to produce multi-Gaussian relationships with 
transformations, for example the stepwise conditional transform (Leuangthong and Deutsch, 2000; 
Rosenblatt, 1952); however, this method requires a substantial amount of data, which grows exponentially 
with the number of variables.  This problem is commonly referred to as the curse of dimensionality.  For 
application to geological resource modeling, multivariate distribution modeling techniques must be 
insensitive to available data.  This is especially true for certain reservoirs when there are typically very few 
samples due to the cost and risk in obtaining them. 

Non-parametric techniques for smooth estimation of distribution functions have been available for some 
time, going back to the kernel technique (Rosenblatt, 1956).  Their presence in the field of geostatistics has 
been limited to modeling univariate distributions, commonly with the empirical distribution, and change of 
support models.  The empirical distribution is used in calculating the normal score transformation of a 
variable.  A smooth estimate of the empirical distribution using Hermite polynomials has been 
implemented to transform distributions across different support volumes (Chiles and Delfiner, 1999).  Non-
parametric techniques are useful in other areas of geostatistics. 

The sequence of polynomials known as Bernstein polynomials has several advantageous features that make 
them amenable to multivariate distribution modeling.  In this paper, marginal distributions are Gaussian for 
all variables after normal score transformation, which is often the case in geostatistics.  Bernstein 
polynomials are then used to model the multivariate empirical distribution.  This paper first discusses the 
multi-Gaussian assumption in geostatistics.  This is followed by the definition of Bernstein polynomials 
and the method of multivariate distribution modeling is described afterwards with bivariate examples.  
Finally, an application to model the multivariate distribution of permeability tensor elements is covered. 

Background 

Several geostatistical modeling techniques that involve multiple variables are based on the assumption of 
multivariate Gaussianity.  After normal score transformation, the variables are assumed to follow a 
Gaussian random function (GRF).  This is an important assumption since Gaussian distributions are fully 
defined by a mean and covariance function, the two requirements for Kriging (Chiles and Delfiner, 1999).  
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The spatial distribution of a GRF can be determined knowing these two components.  It is common to see 
other assumptions on the mean, typically tied to a particular form of Kriging.  Simple Kriging assumes the 
mean is known and is more often assumed to be zero with Gaussian data.  Ordinary kriging assumes the 
mean is unknown, but constant.  This is a special case of Universal kriging, which assumes the mean is a 
polynomial expansion. 

There are several geostatistical modeling methods that involve the multi-Gaussian assumption; three will be 
touched on here: cokriging, collocated cokriging and Bayesian updating.  Cokriging involves relating a set 
of variables together with a linear model of coregionalization.  Essentially this is a set of covariance 
functions for each variable (direct covariance) and between the variables (cross covariance).  Different 
variables are combined into a single covariance matrix calculated from the direct and cross covariance 
functions.  Cokriging is typically implemented to estimate one primary variable; however, there is a variant 
to estimate two or more variables simultaneously.  Estimates for each variable are also associated with an 
estimation variance and these parameters describe Gaussian distributions. 

Collocated cokriging is a special case of cokriging where only two variables are considered.  One is treated 
as secondary and is co-located with each location to be estimated.  Rather than using numerous 
conditioning data of each variable type as in cokriging, this variant uses only the co-located secondary.  
Due to this simplification, this model is known as a Markov-type model (Chiles and Delfiner, 1999).   No 
cross covariance function is needed; rather we assume it is equivalent to the primary variable’s covariance 
function at lag h scaled by the covariance between the variables at lag h=0. 

Bayesian updating is slightly different than the variety of cokriging estimators discussed above.  Several 
primary and secondary variables are combined into prior and likelihood distributions that are used in 
Bayes’ theorem to calculated updated distributions for the primary variables (Deutsch and Zanon, 2007).  
Secondary are assumed discrete variables.  Each primary variable is kriged independently providing the 
prior distributions.  Correlations between secondary to secondary and primary to secondary are used to 
calculate the likelihood.  The outcome is a set of estimates and estimation variances that describe non-
standard normal distributions for each primary variable. 

All three multivariate methods discussed result in an estimate and estimation variance for each variable.  
Problems arise when considering simulation, which is typically performed assuming variables define a 
GRF.  Results will reproduce this function; however, after normal score transformation only the marginal 
distributions are truly Gaussian.  Simulation with collocated cokriging involves only one distribution from 
which a random value is drawn.  Simulation of the other multivariate methods can be done by drawing a set 
of correlated values from a standard normal multivariate distribution, which is described by the covariance 
matrix between those variables (Johnson and Wichern, 2002).  Values must then be conditioned by the 
marginal distributions from kriging (Deutsch, Ren and Leuangthong, 2005). 

What if the structure beyond marginal distributions was not Gaussian?  The actual distribution between 
variables would not be reproduced by the multivariate geostatistical methods discussed above.  In fact, 
there are some variable combinations that result in very peculiar relationships after normal score 
transformation.  Multivariate modeling will be demonstrated later using elements of a permeability tensor 
and the relationships between some of the variables will be looked at here to show how non-Gaussian they 
are.  Full permeability tensors calculated from unstructured grid blocks are used (Equation 1). 
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For visualization purposes, bivariate relationships between pairs of tensor entries will be looked at.  
Relationships that are observed here are specific to the scenario from which tensors were derived.  
Different conditions on the grid cells, geology, porosity and scalar permeability will lead to different 
relationships.  Also, using other flow simulators and conditions on flow will affect tensor solutions. 

Three different forms of bivariate relationships were determined to exist between tensor entries; diagonal to 
diagonal (Figure 1A), diagonal to off-diagonal (Figure 1B), and off-diagonal to off-diagonal (Figure 1C).  
Each type of relationship shows similar shape and form of marginal distribution, so there is no need to 
show all relationships.  Trivariate relationships are too cumbersome to visualize effectively here.  



  203-3 

Reproduction of these relationships would be difficult if not impossible assuming a multivariate Gaussian 
distribution.  A model that can capture the relationships, yet have Gaussian marginal distributions will 
provide better statistical reproduction.  This paper proposes the use of Bernstein polynomials to model 
bivariate and higher dimensional relationships such as those exhibited by permeability tensors 

Bernstein Polynomials and Cumulative Distributions 

Bernstein polynomials have been applied to modeling univariate distribution functions (Kakizawa, 2003; 
Babu, Canty, and Chaubey, 2002; Petrone, 1999) as well as multivariate distributions (Sancetta and 
Satchel, 2004; Sancetta, 2007; Kolev, Anjos, and Mendes, 2006).  There are several characteristics of these 
polynomials that make them attractive for modeling cumulative distribution functions (cdf).  The general 
form of Bernstein polynomials will be provided first in their univariate and multivariate forms. 

Any continuous function can be approximated by a sequence of Bernstein polynomials; however, the 
functions must be defined in the space [0,1].  Various transformations exist for functions that do not meet 
this condition.  An approximation to a function, f(x), by Bernstein polynomials, Bn(f : x), of degree n with x 
in [0,1] is given by Equation 2.  Bn also interpolates the endpoints of the interval being approximated, that 
is Bn(f : 0)=f(0) and Bn(f : 1)=f(1). 
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The function f must be known at x=a/n, a=0,…,n, and it is approximated by the combination of Bernstein 
basis functions, Ba,n(x).  Extending Equation 2 to multiple dimensions amounts to a product of Bernstein 
basis functions (Equation 3) that are defined on the hypercube [0,1]d.  A set of Bernstein polynomials 
define each axis of a multidimensional function f(x1,x2,…,xd).  All functions do not have to be known for the 
same set, a/n, a=1,…,n.  This function, with some constraints to be discussed, will be used to capture the 
bivariate structure of Figure 1 as well the multivariate structure of permeability tensor elements. 
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In reference to modeling cdf’s for geostatistics, there are two properties of Bernstein polynomials that are 
amenable: 

1. If f(x) is positive on [0,1], Bn(f : x) is also positive: Bn is a monotone operator.  If f(x) is bounded 
by [y,Y], then so is Bn(f : x).  For cumulative distributions, y = 0 and Y = 1 giving 

 0 ( ) 1 0 ( : ) 1, [0,1]nf x B f x x≤ ≤ ⇒ ≤ ≤ ∈  (4) 

2. If f(x) is monotonically increasing in [0,1], so is Bn(f : x).  for a proof see (Phillips, 2003). 

 '( ) 0 0 '( : ) 0, [0,1]nf x B f x x≥ ⇒ ≤ ≥ ∈  (5) 

For a cumulative distribution, Bn(f : x) will be approximating the probability, P(X ≤ x).  These probabilities 
are typically approximated in geostatistics with the empirical distribution (Equation 6).  Data may either be 
given equal weights (λ’s) or by other means such as declustering.  Normal score transformation is applied 
to make this empirical distribution Gaussian.  The problem now lies in modeling structure beyond the 
marginal distributions when considering more than one variable.  This structure can also be approximated 
with a multivariate empirical distribution; however, before getting into the details on the use of Bernstein 
polynomials, some comments on empirical distributions and histograms must be made. 
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Modeling the empirical distribution can be done with values from Equation 6 directly; however, this poses 
a problem for Bernstein polynomials when extending to higher dimensions.  Acquiring f(a1/n1,…,ad/nd) in 
Equation 3 would require resampling the empirical distribution on regular intervals in each dimension.  
Consider the nine variables to be modelled in permeability tensors and resampling with only 5 values per 
variable.  Each sample would be defined by a vector, x, with 9 elements and a probability.  The empirical 
distribution would require storage for every x amounting to 59=1,953,125.  This would rapidly become 
unacceptable with increased variables and number of resample vectors.  However, if the density is 
considered rather than the cumulative probability, one will find that in almost all cases the set is sparse, 
containing many zero density points.  This result is shown for the cross-plot of Figure 1A (Figure 2) using 
20 resample points along each axis.  All 400 points are assigned values larger than zero for the empirical 
distribution whereas only 98 of them have a density greater than zero.  Note that the maximum number of 
populated bins possible will always be equal to the size of the data set. 

To accommodate this issue, modeling of the empirical distribution can be accomplished by integrating the 
Bernstein approximation of the density.  Densities having a value of zero can be omitted from Equation 3.  
Integration of Equation 3 can be done by integrating each polynomial component separately, since each 
only depends on one of x1,…,xd.  Calculating the cumulative distribution for a particular x is done by 
integrating Equation 2 from 0 to x (Equation 7), which can be evaluated recursively by parts.  Equation 8 is 
the multivariate form of Equation 7, which is the same as Equation 3 with Ba,n(x) replaced with βa,n(x). 
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Methodology 

Recall that Bernstein polynomials are defined for all continuous functions on [0,1] and that the multivariate 
distribution model to be generated has Gaussian marginals, which are defined for [-∞,∞].  Transformation 
to [0,1] is accomplished by evaluating the standard normal cdf.  In effect we are now dealing with 
modeling a copula function.  Marginal distributions are uniform and defined in [0,1].  To ensure the 
marginals are uniform, two requirements of Equation 8 must be met.  The first (Equation 9) is guaranteed if 
f(x1,…,xk-1,0,xk+1,…,xd)=0, which it should for a Gaussian marginal distribution or equivalently its 
probabilities over [-∞,∞].  The second requirement (Equation 10) ensures the densities sum to a uniform 
distribution along each dimension (Sancetta and Satchell, 2004). 

 1 1 1( : ,..., ,0, ,..., ) 0n k k dB f x x x x− + =  (9) 

 ( :1,...,1, ,1,...,1)n k kB f x x=  (10) 

A series of operations are involved in preparing data to model the multivariate structure, most of them are 
common to geostatistical modeling workflows. 

1. Data preparation (cleaning, outlier, missing sample and duplicate point detection, etc…) 

2. Declustering to accommodate irregularities in sample spacing 

3. Normal score transformation using declustering weights if available 

Probabilities or quantiles for distribution modeling can either be retrieved during normal score 
transformation or by evaluating the standard normal cdf with normal scores from 3 (Figure 3).  Remaining 
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components of the modeling process involve calculating densities from the quantile space for Equation 8, 
and ensuring those values meet requirements of Equation 9 and 10.  When dealing with normal scores 
without weights, or those that share the same set of declustering weights, which is often the case, quantiles 
will be distributed such that Equation 10 is honoured.  Equation 9 is honoured by construction. 

Resampling of the distribution, as mentioned previously, will be done with a multivariate histogram.  It 
must capitalize on the sparse nature of the problem, especially when data sets and number of variables 
become large.  Moreover, the Bernstein approximation does not require zero-valued densities.  A bivariate 
histogram (Figure 4) was calculated for the quantiles in Figure 3.  Note that the marginals are uniform 
cdf’s. 

Having calculated densities in quantile space provides all the information for modeling the multivariate cdf 
with Bernstein polynomials.  Cumulative distributions are used for several purposes in geostatistics, two 
being the evaluation of probabilities from events and drawing events given probabilities.  The latter is 
carried out in simulation such as sequential Gaussian simulation.  A quantile is randomly drawn from a 
uniform distribution and the resulting event is calculated as the inverse of the cdf model.  For multivariate 
simulation, events must be drawn such that any underlying correlation structure is reproduced.  This is 
possible from the Bernstein polynomial model described above.  Operations such as these will be discussed 
in the following section. 

Operations 

In reference to geostatistical modeling applications, several operations are carried out with cumulative 
distributions: evaluating probabilities, inversion, and extracting conditional distributions.  These operations 
will be described in reference to Equation 8 for a vector of quantiles x that are associated with a vector of 
Gaussian random variables y.  Evaluating probabilities is straightforward and amounts to evaluating 
Equation 8 with x.  Inversion can be accomplished by line search techniques.  For a single variable and 
given a probability p, we must find x such that Equation 7 evaluates to p.  For multiple variables, 
conditional distributions are required. 

Given a multivariate distribution F(x), the conditional distribution in terms of xj is given by Equation 11.  
Extracting the conditional distribution from Equation 8 is done by differentiating the integral component 
that involves xj (Equation 12).  Note that x(j) indicates that element j is not in x. 
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Inversion of Equation 8 for d variables involves inverting the first variable’s marginal distribution for a 
probability p1.  Since the marginals are all uniform on [0,1], the probability is equal to the first value, x1=p1.  
Equation 12 with j=1 is the conditional distribution from which x2 can be determined from a second 
probability p2.  For variable 3, Equation 12 is of the form Bn(f : x(1,2) | x1, x2).  This process continues for all 
variables to give x.  Since x is a set of quantiles, y can be readily calculated knowing the actual marginal 
distributions. 

Application: Permeability Tensors 

A distribution model will be generated for nine variables that describe a set of full permeability tensors.  
Full tensors result because non-linear boundary conditions were applied in flow simulation.  Permeability 
tensors were calculated for a set of 3-dimensional voronoi cells using a finite difference single phase flow 
solver.  There were a total of 99 cells and 50 realizations resulting in 4950 tensors to use in generating a 
distribution model.  20 bins per variable were used for a total of 209 bins.  Only 4902 actually contained 
data for calculating the densities. 
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Visualization will only be done on the bivariate level.  Since it is somewhat complicated to decipher the 
quality of the distribution model from bivariate cumulative plots, sets of conditional distributions will be 
extracted for the three cases observed in Figure 1.  20 conditional distributions were calculated for each 
case: Kzz conditional to Kxx, Kxy conditional to Kxx and Kxz conditional to Kxy.  These were joined with 
contours in Figure 5.  Relationships that are apparent in Figure 1 are reproduced by the contour plots in 
Figure 5.  There is some break down towards the extremes of the conditioning variables (those on the x 
axes).  The bimodal structure in the Kxx – Kxy and Kxy – Kxz relationships is recovered by the model. 

Some features of the input data were smoothed out by using Bernstein polynomials, which tend to have a 
slow convergence to the true underlying function.  More accurate fit results can be obtained by using more 
bins in calculating the densities.  However, processing time to evaluate cumulative probabilities from the 
model increases with number of bins (up to a maximum when each data point falls only in 1 bin).  Some 
comments on improving model quality will be made below. 

Conclusions and Future Work 

The multivariate Gaussian assumption can be unacceptable for certain geostatistical applications.  The 
normal score transformation only ensures univariate Gaussianity.  By using non-parametric methods, more 
accurate relationships exhibited by multivariate data sets can be captured in bivariate and higher 
dimensions.  The method described here using Bernstein polynomials can be applied to a large number of 
variables and can capture relationships with relatively few data.  The number of samples used to model the 
nine-variable distribution for permeability tensors was low for that number of dimensions.  Not having 
access to the true underlying distribution did not permit statistical testing for model quality; however, a 
simple visual study shows substantial information gain over the multi-Gaussian assumption. 

The current methodology for modeling multivariate distributions can be improved.  For example, the only 
knowledge that is applied to the model is Gaussian univariate marginals and the sample data.  This can be 
enhanced by modeling multivariate marginals, starting with bivariate or dimension d=2, in a more accurate 
manner and using this to constrain the d=3 distributions and so on.  Consider modeling the distributions 
shown in Figure 5 just as bivariate models with 100 bins per dimension rather than 20.  Results are 
enhanced (Figure 6).  Due to the current indexing methods 100 bins in all nine dimensions is not feasible.  
Indexing methods impede the use of too large a number of bins in all dimensions since 1-dimensional 
indexing is used.  Use of vector indices will accommodate the use of more bins and provide a slight 
improvement in processing time since 1-dimensional indices will not have to be resolved to all other 
dimensions.  There would be an increase in memory usage of n(d-1) with d the number of dimensions and n 
the number of populated bins.  It should also be noted that in order to evaluate a single cumulative 
probability, the number of populated bins must be cycled over completely.  Methods to avoid this operation 
may be required especially for Monte Carlo simulation, when thousands of samples may be drawn from the 
distribution model. 
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Figure 1: Normal score transform resulting in non-Gaussian bivariate distributions. 

 

 
Figure 2: Bivariate empirical distribution and density function for Kxx with Kzz. 



  203-9 

 
Figure 3: Transform from normal scores to quantiles for Kxx and Kzz. 

 

 
Figure 4: Quantile density, marginals and cumulative density for Kxx and Kzz. 
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Figure 5: Cumulative conditional distributions using 20 bins per dimension. 

 

 

Figure 6: Cumulative conditional distributions using 100 bins per dimension 


